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Abstract

2,6-Diphenyl-4H-chalcogenopyran-4-ones and 2,6-diphenyl-4H-chalcogenopyran-4-thiones, a new series of
catalysts for the Baylis-Hillman reaction, were investigated. The reactions proceeded smoothly in the presence
of 1 mol eq. of TiCly under atmospheric pressure at 0°C, giving adducts in moderate to high yields.
Chalcogenopyranones and chalcogenopyranthiones were a more efficient kind of catalyst than Me3S.
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The Baylis-Hillman reaction catalyzed by a tertiary amine or a phosphine is a carbon-
carbon bond forming reaction between aldehydes and activated alkenes which serves as
versatile building blocks for organic synthesis [1-3]. The drawback to this methodology is
its slow reaction rate, and many research groups have examined a variety of methods to
accelerate the reaction including an asymmetric reaction [4-14]. Recently, we have
investigated the chalcogeno-Baylis-Hillman reaction catalyzed by a chalcogenide in the
presence of a Lewis acid [15-17]. The reaction proceeded smoothly under atmospheric
pressure at room temperature. We have developed an asymmetric version of the chalcogeno-
Baylis-Hillman reaction by the use of a hydroxy chalcogenide [18]. Alkylation of 4H-
chalcogenopyran-4-ones took place not at the chalcogen atom but at the oxygen atom because
of formation of stable chalcogenopyrylium salts [19-21]. This prompted us to develop a new
series of catalysts, namely, 4H-chalcogenopyran-4-chalcogenones (Scheme 1). We will report
on 2,6-diphenyl-4H-chalcogenopyran-4-ones and 2,6-diphenyl-4H-chalcogenopyran-4-thiones
1-4 [22,23] as a novel kind of catalysts for the Baylis-Hillman reaction.

p-Nitrobenzaldehyde and 2 mol eq. of methyl vinyl ketone were treated with a catalytic
amount of 2,6-diphenyl-4H-chalcogenopyran-4-ones and their thione derivatives 1-4 in the
presence of 1 mol eq. of Lewis acids in CH2Cl at 0°C for 1 h under atmospheric pressure
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(Table 1). First, we examined some Lewis acids in reactions with 2,6-diphenyl-4H-
thiopyran-4-one 1 as a catalyst (entries 1-4) and found that TiCls gave the best result (entry
1). A reaction with 1 in the absence of TiCl4 provided no coupling product. Next, other
catalysts 2-4 and Me2S were examined in the presence of 1 mol eq. of TiCls (entries 5-8).
All catalysts 1-4 gave better results than Me2S. Moreover, all catalysts were recoverable
without significant loss, although thiones 2 and 4 were partly transformed into ketones 1 and
3, respectively, during the purification of the reaction mixtures by preparative TLC on silica
gel.

Table 1
The Baylis-Hillman reaction catalyzed by 4H-chalcogenapyran-4-ones and thiones

H
Cat. (0.1 mol eq.)
p-NOCeHCHO  + \i
N-"“Me  Lewisacid (1 moleq) P NO2CeH Me

2 mol eq. CHaCl;, 0°C, 1h 5

Entry Cat. Lewis acid 5 (%Yield)®

1 1 TiCly 86

2 1 SnCly4 No reaction

3 1 AlCl3 70

4 1 BF3-Et,0 No reaction

5 2 TiClg 98

6 3 TiClg 100

7 4 TiClg 96

8 MegS TiClg 72

8Isolated yieki based on p-nitrobenzaldehyde.

No intermediates such as I or II, shown in Scheme 1, could be isolated. It was suggested,
however, that the reactions proceeded via I and II because 4H-chalcogenopyran-4-ones were
O-alkylated at the carbonyl group rather than the chalcogen atom [19,20] even in the case of
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4H-telluropyran-4-one [21].1

First, several aldehydes and methyl vinyl ketone were treated with 0.1 mol eq. of
thiopyranthione 2 and selenopyranone 3 in the presence of 1 mol eq. of TiClg in CH,Cl3
under atmospheric pressure (Table 2). Reactions of aromatic aldehydes gave adducts 6-8 in
moderate to high yields even for 1 h at 0°C (entries 1-6).  Treatment of aliphatic aldehydes

Table 2
The Baylis-Hillman reaction of some aidehydes and activated alkenes with thiopyranthione 2 and selenopyranone 3
H
RCHO . \/EWG Cat. (0.1 mol eq.) o EWG
2 mol eq. TiCl4 (1 mol eq.), CH,Cly
Entry Cat. Aldehyde Alkene Conditions Product (%Yiekd)*
1 2 0°C,1h 6 (95
p-CICgH4CHO \i (95)
2 < Me _0'C,_1_ h L _6_ (86)
2 0°C,1h 7 (4
3 PhCHO \J (45)
4 3 Me 0°C,1h 7 (80)
0°C,1h 8 (32
5 2 p-MeCgH,CHO \j\ c (32)
6 3 Me 0°C,1h 8 (43)
7 2 0°C,1h 9(73
PhCH2CH,CHO \j\ 3)
8 3 Me 0°C,1h 9 (86)
j 0°C,1h 10 (44
o o X 4
10 3 Me 0°C,1h 10 (46)
1 2 0°C,th 11 (80
p-NO,CgH4CHO O:O (60)
12 3 L 0°C, l_h _______ 1 1__(912 _____
13 2 0°C,1h 12 (70)
p-NO;CeHaCHO ©=o
14 3 0°C,1h 12(75)
150 2 rt,20h 13(90
p-NOzCngCHO \i 0)
16° 3 SEt rt,20h 13(84)
17 2 0°C,1h 14 (58
p—NOzCsH4CHO \\\j\ 8)
18 3 H 0°C,1h 14 (70)
19 2 reflux, 24 h 15 (32
p-NOCeHyCHO N o2
20 3 reflux, 24 h 15 (53)

3isolated yield based on an aldehyde. °The crude products were treated with DBU before purification {17].

1 This mechanism was suggested by |H NMR experiments. In the 'H NMR spectrum /\j\ TicH
A3

of a mixture of selenopyranone 3, 1 mol eq. of methyl vinyl kctone and 1 mol ¢q. of

TiCly, two sets of signals derived from methyl vinyl ketone were observed; one was due

10 methyl vinyl ketone itself, and the other [ 2.35 (3 H, s, Me), 3.03 and 3.76 (each 2 ~ 2
H, 1, J = 6.4 Hz)] were assigned 10 a selenopyrylium structure III. On the other hand, | s |

only one set of signals derived from 3 was observed; these peaks were assigned to P \S & “Ph P §e Ph
selenopyrylium salts III and IV and overlapped with each other. The signals were +

identical with those in the 'H NMR spectrum of a mixture of 3 and TiCly (1 mol eq.), n v

which were assigned to IV, The 3-H signals of selenopyrylium salts III and 1V were observed at 3 8.37, considerably lower than
that of selenopyranone 3 at 8 7.30. Generally, 3-H signals of chalcogenopyrylium salts appear at about 3 8.5 [24], and the results
support the formation of selenopyrylium intermediates II1.
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for 1 h at 0°C also provided adducts 9 and 10 in moderate to high yields (entries 7-10). In
most cases, selenopyranone 3 gave better results than thiopyranthione 2. Next, we examined
the reactions of several activated alkenes and p-nitrobenzaldehyde with thiopyranthione 2 and
selenopyranone 3 as a catalyst in the presence of 1 mol eq. of TiClsg in CHCl2 under
atmospheric pressure. Adducts 11-15 were obtained in moderate to high yields from 2-
cyclohexenone, 2-cyclopentenone, S-ethyl thioacrylate, acrolein and acrylonitrile (entries 11-
20), whereas no coupling product was obtained in the case of methyl acrylate.

The general procedure for the chalcogenopyran-catalyzed Baylis-Hillman reaction is as
follows: To a stirred solution of a chalcogenopyranone (0.05 mmol), p-nitrobenzaldehyde (75
mg, 0.5 mmol) and methyl vinyl ketone (105 mg, 1 mmol) in dry CH2Cl2 (1.5 cm3) was
added dropwise TiCls (55 pdm3, 0.5 mmol) at 0°C. The mixture was stirred at the same
temperature for 1 h, and the reaction was quenched by the addition of saturated aqueous
NaHCO3 (2 cm3). The inorganic precipitate was removed by filtration through CeliteT™,
and the filtrate was dried (MgSO4) and evaporated under reduced pressure. The residue was
purified by preparative TLC on silica gel eluted with CHClp-acetone (20:1, v/v) to give
adduct S.

In summary, we have developed a new series of catalysts, 4H-chalcogenopyran-4-
chalcogenones, for the Baylis-Hillman reaction. A detailed mechanistic study including
isolation of intermediates, and further exploration of the catalysts and their modification for
application to asymmetric reaction are now in progress.
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